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A new finite-difference method involving a streamline coordinate is
developed for analyzing two-dimensional steady non-Newtonian flows
with history dependenca. Tho boundary of tho material is partially free
and partially confined. The proposed method is neither the method of
stream function nor the use of convected reference frame. It simply
regards streamline as an independent coordinate, thereby retaining the
merits of both the Eulerian and Lagrangian schemes. The efficiency of
the method is demanstrated in examples of several models’ matter
steadily discharging from a slit into a free space.  © 1993 Academic
Press, ne.

1 INTRODUCTION

This paper describes a new computational method for
solving steady two-dimensional fMlows of non-Newtonian
matter with free surfaces and history dependence. The idea
was reported elsewhere {17, but the example that was given
did not include free surfaces and history-dependence and,
hence, did not demonstrate the major advantages of the new
method. The idea is to rewrite the basic equations of a
material flow in terms of a streamline coordinate. Similar
ideas were cxamined before in various circumstances by
Duda and Vrentas [2], Pearson [37], Papanastasiou et al.
[4], and Luo and Tanner [5]. The former two concern
Newtonian fluid and the lalter two are streamlined finite
clement formulations for general complex Mows, par-
ticularly viscoclastic liquids with memories. These studies
revealed o certain merit of the streamline approach to
material Nlows with free surlaces and history dependences.
The basic idea of all of these methods resides in an iterative
correction of streamline geometry. In the proposed method,
we go one step further and regard the streamline as an
independent coordinate.
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In this paper, we fully explore the efficiency of the
streamline coordinate method for analyzing steady flows of
complex non-Newtonian matter with free surfaces and
history-dependence. 1n the standard Eulerian method, the
coordinates, Cartesian or natural {general), are time inde-
pendent and mesh points are lixed in space. The streamiines
do not necessarily follow mesh points, and therefore
integrations along the streamlines to obtain hisiory-depen-
dent quantities can be accurately accomplished only with
considerable difficulty. On the other hand, the streamlines in
the present method are by definition always through mesh
points. The motion along a streamline of number » and
the time independent coordinates (x, n) are dynamicatly
connected through a new field variable y{x, m). The method
is not equivalent to the stream function method, which is
simply a potential (scalar or vector) description of the
velocity field, and does not imply an ingenious choice of
coordinates or mesh points for problems with free surface
and/or history dependence. Moreover, as we shall see, the
main part of the calculation does not require determination -
of the streamline positions, p(x, m), but these can be casily
found once the velocity fields are solved. This is particularly
attractive for problems with free surfaces because, unlike in
the conventional method, we do not need to know the actual
positions of the free surfaces during the course of calculations.
No matter what the geometry of confining walls and no
matler where the ree surfaces, the boundary gcometry is
always reclangular in the calculational space (x, m).

Computationally, we start with the standard Eulerian
finite difference method with natural or general coordinates
and modify it so as to meet our formulation [6, 7]. This is
to realize a steady flow as a series of transient states, under
the expectation that in a low (eflective) Reynolds number
flow, a strong nonlinearity arising from the present formu-
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lation in addition to non-Newtonian character and/or
history-dependence, will not cause numerical instabilities.
In fact, we find that our streamline coordinate method
is unexpectedly stable. The present method appears to
have nearly maximum efficiency for analyzing complex
two-dimensional flows with free surfaces and history
dependence.

We have organized the paper as follows. In the next
section, basic equations are presented for a model Bingham-
like material in terms of a streamline coordinate. In Sec-
tion TII, boundary conditions, particularly of free surfaces,
are discussed. Section 1V describes numerical procedures
and some results. Finally, in Section V some concluding
remarks are given, especially on a certain difference between
two-dimensional and three-dimensional formulations of the
new method.

After the completion of this work, we have noticed several
papers [11-13]. Ghosh and Kikuchi -presented finite-
element arbitrary-Lagrangian~Eulerian description of some
metal deformation processes. The idea is to introduce grid
points which will be close to Lagrangian mesh points
when Lagrangian meshes are appropriate but will be
homogencously distributed in the places where Lagrangian
meshes are severely distorted, thereby avoiding numerical
singularities and inaccuracies associated with the so-called
updated Lagrangian method. On the other hand, Hoysan
and Steif presented a streamline-based method for steady
metal-forming processes. Their idea appears to be the
two-dimensional version of that of Pearson [3] in three
dimensions. These methods and our method are more or
less different in detail but have a common point that they
struggie for a best compromise between Eulerian descrip-
tion and Lagrangian descriptions.

It is emphasized that the main goal of this paper is to
develop a new efficient method. We must admit that the
constitutive equations in the next section, particularly for
history dependence, are not quite realistic but do represent
essential aspects of nonlinearity and history dependence.
A more realistic history dependence model for a specific
material as well as a more realistic treatment of the material
surface and their accurate and systematic numerical analysis
are now on-going and will be reported elsewhere.

I1. BASIC EQUATIONS

Let us consider an incompressible two-dimensional flow
of Bingham material with free surface and history
dependence. The basic equations give

i

ox, (1a)
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where the effective kinematic viscosity v is in general a
functional of the strain-rate tensor e, (see Fig. 1). We
assume

for e>e, (£)
for e<e, (&)

,— min . )
‘ [Vmax + (vmin - vmax) e/ecr(‘f) ( )

In Eq. (2), e=/2e,¢;:, € A&) = 6 {¢)/Vmin, Where the yield
stress o, s a function of the accumulated deformation
(strain) £ defined by

gsg[ue%’]_l:g[we%ﬂ_l

i

zZe%:Z'edrn, (3)
where A/ is a line element along a fluid particle trajectory, an
integer n represents a discretized cell or line segment along
a streamline, and Atf, = Ax,/u; is a transit time. It is noted
that although Eq. (3) is correct also for a non-steady case,
i.c., the deformation field £(r) can in general be time depen-
dent, a time-dependent history dependent problem would
require a more formidable computational capability. It is
also noted that Eq. (2) looks different from the standard
definition of a Bingham fluid, where for large strain rates the
material becomes less viscous:

for

V=Vt 0,/€ lo;+ Pd;| >0,

(4)

e;=0 otherwise,

'
'
]
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FIG. 1. Dependence of the kinematic viscosity v on the magnitude
of strain-rate e. Note that the relationship is local, depending on the
Jeformation field £.
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The physical effects of Eqs. (2} and (4) are, however, essen-
tially the same. Since a large stress implies a large strain
rate, Eq. {4) means that the effective viscosity v approaches
V., for large strain rates, and increases with decreasing
strain rates, reaching e;=0 at some critical value of v.
Equation (2) describes such a behavior of v and is easily
handled numerically, Furthermore, Eq. (2) is more realistic
than the standard Bingham model. Sec Ellwood et al. for a
modified Bingham modei [8].

Now consider a model history-dependent property
described by (cf. Fig. 2).

for {z¢,

i<t

o_y(é) — {Gmin

G max + (O-min - Gmax) é/écr for
This increases the yield stress in a region where the
deformation is relatively small, which then leads to a larger
kinematic viscosity due to Eq. (2) and to a larger portion of
nearly rigid motions of materials in the flow field. We are
thus considering a strain-softened model Bingham matter.

We now make a coordinate transformation from (x, y) to
{x, m) {cf. Fig. 3)

y=y(x, m). (6)

For any field variables f such as pressure and velocities,

é
fxza_f(x! y(x’m))=f.v+f;-yx
X

S =S Vs

(7)

and therefore the différential operators are transformed as

ax - a.r - (yr/ym) 6m

(8)
0= (1/y0) 0.

On the other hand, with the use of y, =v/u and Eq. (8), we
have

Uy F 0, = = (Y o/ V) g+ (1P 0 U = (89 )V - (9)

A

FIG. 2. Dependence of the yield stress ¢, on the deformation £.
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Therefore, the incompressibility Eq. {1a) gives

uy,, = independent of x= U(m). (10)
A convenient choice is to put U(m) equal to the inlet
velocity u. This gives at the inlet

y=m (11)
which defines the position of entering streamlines according
to Fig. 3. With Eqs. (8) and (10}, the differential operators
transform as

a.\' - a.\‘ - (U/U) 6m

(12)
d,— (u/U)d,,.
Two things are worth mentioning here about the trans-
formation. First, Eq. (12} can be regarded as a Cartesian to
natural coordinate transformation (x, y) — (s, {),

ax_b (.j/‘Can_ngf,‘)/J

(13}
&~ (—x.0,+x,8)/J,

where J=x, y,—x; »,. Indeed the transformation (12) is
realized by putting

{=m (14)

v

strgamliine

FIG. 3. Streamline geometry in two dimensions (iop) and three
dimenstons {boitom}.
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in Eq. (13). Unlike the standard natural coordinate method,
however, the transformation (12} is dynamical, ie, its
Jacobian is time dependent. Second and more importantly,
the transformation coefficients involve velocity fields alone,
and therefore, the transformed equations of motion do not
explicitly involve the new unknown y(x, m). The free surface
condition enters into the problem through a boundary
condition which is, as we will see, again expressible in terms
of velocities and pressure only. As a result, the numerical
procedures are the same as in the standard Eulerian finite
difference method, except that the transformed equation of
motion and Poisson equation for pressure are now highly
nonlinear in velocities. The high nonlinearity has probably
been the main obstacle to utilization of this otherwise quite
natural idea of using a streamline coordinate for steady non-
Newtonian flows with free surfaces and history dependence.

The streamline position y(x, m) of the material can be
found by solving the Poisson equation,

((3X.K' + amm} y = (.v,\‘,),\f + (ym}m

= (0fu) o+ (Uft),. (15)
In this way, the present method enables us to determine the
streamlines and free material surfaces with case. An easy
determination of streamlines is obviously a benefit in
treating history-dependent materials.

1. BOUNDARY CONDITIONS

We have two types of boundaries, rigid walls and {ree
surfaces. At the rigid walls, we impose no-slip conditions,
namely = =0. A free-slip case was e¢xamined before [1].
A more general condition at the rigid walls may be
appropriate for certain complex processes.

As for free surfaces, two different treatments are known.
One is due to Harlow and Welch [9] in the analysis of
transient viscous incompressible flows. This is to determine
velocities at the free surface from the incompressibility con-
dition, Eq. (1a), and the pressure is simply assumed to be
that of the applied external pressure. The other is dug to
Papanastasiou et al. [4] in the streamlined finite element
formulation. They require that both the shear stress and
normal stress in the absense of surface tension should be
zero at the free surface, apart from a uniform pressure:

G=0 (16a)

~P+s,,=0 {16b)
It is noted that condition (16) 1s precise, while the condition
of Harlow and Welch is an approximation, because pressure
can be discontinuous at free surfaces, It is also noted that
the conditions (16) are the surface version of the
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Navier—Stokes equation. One more equation necessary to
evaluate velocity and pressure at the surfaces is the mass
equation (1b). Equations (16) and {1b) determmne the
normal gradients u,,, v, and pressure at the free surfaces.
Consulting Fig. 4, we have

e, =(—sin 09, 4+ cos 03 _Hucos tf+ v sin )
=(—uvn, — 00, + U, + uvp, )/ (17 + v7), a7
e,,=(—sin 8,4+ cos 66 ,.)( —u sin § + v cos §)

= (v’u, — uov, — uvu, + u?v ) (u® + 0°).
With the use of Eqs. (12) and (17), condition (16) becomes

—(uvn + %0 W (1 4+ o2 + (un,, + 10,/ U=0

P (18)
-5 + (v7u, —uvw (3 + 07) + (—on,, + up,, )/ U=0.
Solving Eq. (18), together with Eq. (1b), we have

U 3 3 2 232
Uy =— Cu, +ul—wu,+v'v ) (w’ +0v7°)]
v,, = U(—’u +v'v )/(u® +°)? (19)

P= —2up{uu + vv ) (u’ +0?).

An important remark here is that although U=40 at free
surfaces and the transformation coefficients u/U and v/U are
certainly singular there, that does not necessarily mean a
real singularity. This is because these coeflicients always
appear in combination with the operator 8, and the
derivatives u,,, v,,, and P,, are all vanishing like U at the
free surfaces, as is seen from Eq. (19). One can easily show
that P,, oc U at the free surfaces from Eq. (1b).

The velocity profile at the inlet should be given. In a
Newtonian case, it is the fully developed channel flow with
a unit total flow:

Minll:t:6(y7ymin)(_ymax_y)/(yrnax_.yrnin)2 (70)

Uinlet = 0’

matter

surface

FIG. 4. Suraface geometry.
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where y_;., and v, are, respectively, the positions of lower
and upper plates. In the case of a Bingham fluid, a fully
developed plug flow is used. As for a history-dependent
case, we take the same plug flow at the inlef, assuming that
a history dependence is suddenly switched on at the inlet.
The velocity profile of the plug flow can aiso be found
analytically by solving an ordinary differential equation,

vu, =ay, 24
together with Eq. (2) with e,,(£) = 0,in/V i, » although the
expression is rather lengthy and we will not write it down
here. The constant, 2, is related to the total amount of flow.
As for the velocity boundary condition at the outlet, we use
a simple linear extrapolation.

IV. CALCULATIONAL PROCEDURE AND
SAMPLE RESULTS

The sequence of events by which the configuration is
advanced from one time step to the next is basically that of
the standard Eulerian method. Starting with velocity fields
known either as a result of the previous cycle or from the
initial conditions, we proceed as follows:

(A} Calculate the relative deformation field ¢ by
Eq. (3).

(B) Calculate the yield stress field o,(&) by Eag. (5),
given the material constants.

(C) Calculate the viscosity field v by Eq. (2), given the
material constants,

(D) To solve the pressure Poisson equation (lc), we
must avoid a difficulty arising from a possible violation
of the Green's theorem which states that, putting the
right-hand side of Eq. (1¢) as ¢ [10],

apP
J pds—| = di=0. (22)
We expect on physical grounds that our choice of the
Navier-Stokes equation (1c) as a pressure boundary condi-
tion at other than free surfaces, together with physically
meaningful velocity boundary conditions, would satisfy the
Green’s theorem to a good approximation. The results of
our numerical calculations support this idea. We also note
that, following Harlow and Welch [9], the MAC method,
the last term in Eq. (1c) is expressed as an advance time
difference and then the future term is equated to zero,

8 du, LT, mL o T
]:[axz] I:axiil :l

Catex, Mt

(o]
T Al bx,]’

KUWAHARA

where the present and next steps are denoted by indices n
and »n+ 1. Clearly, the idea is to determine the pressure
in order for the velocity to satisfy the incompressibility
condition.

(E) Considering the strong noniinearity of the present
formulation, we use an implicit method for evaluating the
velocity field in the next step. That is, we write Eq. {1b) as

n+ 1 ] a=+1
it — , ouf]

- Ox;

P 42 0
ax; ox

7

a7

(vne;+l)

{24)

and solve for &' 1t should, of course, be understood that
all the quantities are in terms of (x, m) coordinates and the
operators should be transformed using Eqg. (12).

This, then, completes one cycle. As is pointed out in
Section I, the basic equations (1) do not explicitly depend
on y(x, m), the actual position of streamlines. For a steady
problem, therefore, y(x, m) does not have to be evaluated at
each step. One needs to solve the Poisson equation {15)
only once after the iterational calculation reaches a steady
state. The Poisson equation (15) can be solved by the same
procedure as for the pressure, with y, =v/u and y,, = Ufu
giving the boundary conditions. A penalty for this nice
mathematical structure of the streamline method is a
strong nonlinearity which, however, turns out to be less
troublesome than is expected.
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FIG., 5. Calculated flow patterns for, from top te bottom, a Newtonian
fluid, a modified Bingham fluid, and a strain-softened Bingham fluid.



STEADY FLOWS OF NON-NEWTONIAN MATTER

Using the streamiine coordinate method, the flow
dynamics of some two-dimensional matter discharging from
the parallel plates into a free space is analyzed. Figure 5
shows calculated flow patterns for, from top to bottom,
a Newtonian fluid, a modified Bingham fluid, and a
strain-softened Bingham fluid. The relevant parameters
are 4t=0.003, Ax=4m=005 v, =001, v, =01,
=005, 6.,.,=02 and &, =10. Corresponding
pressure contours are shown in Fig. 6. Viscosity contours
corresponding to Fig. 5 middle and Fig. 5 bottom respec-
tively are shown in Fig. 7 top and Fig. 7 bottom. The con-
tours of the accumulated deformation as defined by Eq. (3)
are shown in Fig. 8. This deformation is responsible for the
yield stress o (&), Eq. {5), and hence lor the viscosity change
from Fig. 7 top to Fig. 7 bottom. To obtain these results,
iterations were continued until the following convergence
criteria was fulfilled:

T min

S le(i, J)— 1 (i )] /Z W, ) <1075 (25)

i )

A plug flow featuring the Bingham fluid is clearly seen in
Fig. 5 middle. A difference between Fig. 5 middle and Fig. S

Fig. 6. Iscbars corresponding to the cases (top), (middle), and
(bottom) in Fig. § are shown in top, middie, and bottom, respectively.
Pressure interval between lines is 0.02. Pressure is zero at the free surface
and shows a large minimum right after the exits near the corner. A struc-
ture near the inlet in the cases (middle) and (bottom) signifies a quick
development of the plug flow from the Newtonian inlet flow.
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FIG. 7. Viscosity contours corresponding to the cases (middle) and
(bottom) in Fig. 5 are shown in top and bottom, respectively. Viscosity
interval between lines is 0.003. Viscosity changes rapidly from its minimum
0.01 near the wall to its maximum 0.1 in the rest of the material through
a thin region.

bottom is in the lateral { y) width of the material at the out-
let; the iatter swells relative to the former. On the other
hand, there is no such difference between Fig. 3 top and
Fig. 5 middle. Qualitatively, comparing velocities and
viscosities, one easily finds that the viscosity responsible for
the lateral width at the outlet is that near the parallel plates.
In the Bingham case, the relevant viscosity, which connects
the main part of the flow to the rest of the flow and to the
resistive walls, is as small as in the Newtonian case. The
main part, therefore, moves with relatively small resistance,
and hence small momentum loss, into the free space and is
accompanied by a subsequent acceleration of the rest of the
material, which then shrinks in the lateral direction due to
incompressibility. In the history-dependent case, on the
other hand, the relevant viscosity is rather large, implying
that the whole material now moves rigidly with a relatively
large momentum loss. As a result, the uniform speed is
relatively small at the outlet, giving rise to a relatively large
lateral width. This argument then suggests that the

FIG. 8. Contours of the accumulated deformaticn £. It is zero at the
inlet and increases down the stream and toward the no-slip walls. The
interval between lines is 1.0
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FIG. 9. Calculated flow pattern for a Newtonian fluid with v =0.1.

Newtonian case with v=v_,, will exhibit a larger lateral
width at the outlet as in Fig. 5 bottom. As is seen in Fig, 9,
this is indeed the case, although the history dependence
imposes some difference between Fig. 5 bottom and Fig. 9.

V. CONCLUDING REMARKS

In this paper, we have described a new computationally
efficient method for analyzing steady non-Newtonian flows
with free surfaces and history dependence. In our method,
the streamlines always pass through mesh points and the
determination of velocities and pressure, and that of
streamiines, are separated from each other. This is cleariy a
benefit in solving problems with free surfaces and history
dependence.

We should also mention that there are some underlying
assumptions or limitations to the streamline coordinate
method. First, we have assumed that no circulation exists
in the flow. Second, we have also assumed that the high-
nonlinearity in the transformed basic equations would not
cause any numerical instabilities. These assumptions are,
however, reasonable because our goal is to analyze the flow
dynamics of history-dependent non-Newtonian matter with
a relatively low effective Reynolds number. Moreover, the
first assumption,- we believe, could be removed without
much difficuity.

Finally, we note that the present method essentiaily relies

"on the two-dimensionality. In three dimensions, two
parameters o« and B are necessary to characterize a
streamline (cf. Fig. 3):

(26)

y=y(xa B); z=z(x, o B)
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Denoting the x-component of the inlet velocity by Ulg, fi),
one can show that the incompressibility condition now
gives, instead of the corresponding two-dimensional
Eq. (10},

My, 25— ¥pz,) = Ula, ). (27)
Equation {27) alone is, of course, not sufficient to determine
each clement of the Jacobian 8(y, z)/d(«, B). As a result,
the transformed basic equations are no more free from
the new ficld variables y and z. Some innovations are thus
called for to preserve the nice mathematical structure of
the two-dimensional streamline coordinate formulation.
Nevertheless, the computational efficiency of the streamline
coordinate method should apply in any dimension for the
accurate analysis of the flow dynamics of non-Newtonian
matter with free surfaces and history dependence.
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